

WILSON DISEASE

Dr.M.Zahmatkeshan

Pediatric Gastroenterologist

REFERENCES:

- 1. Wilson's Disease in Children: JPGN: 2018;66: 334-344
- 2. 2. Wilson disease in children and adolescents:Meranthi e al.Archdischild:vol105,5 2018
- 3. Management of Wilson Disease Diagnosed in Infancy. JPGN :May 2020 Volume 70 Issue 5
- 4. Pediatric Wilson Disease Presenting as Acute Liver Failure. JPGN:September 2020-Volume 71-Issue 3
- 5. Long Term Urinary Copper Excretion on Chelation Therapy in Children with Wilson Disease JPGN: 2021 Feb 1;72(2):210-215
- 6. Pediatric Pseudo-pseudoxanthoma Elasticum Resulting From D-Penicillamine Treatment. JPGN:_December 2020 - Volume 71 - Issue 6 - p 731-733
- 7. Fulminant Wilson Disease in Children.JPGN:_December 2020 Volume 71- Issue 6 p 720-725
- Early Onset of Wilson Disease: Diagnostic Challenges. JPGN: _November 2017-Volume 65-Issue 5 - p 555-560
- 9. Cognitive Abilities of Children With Neurological and Liver Forms of *Wilson Disease*. JPGN: March 2017 - Volume 64 - Issue 3 - p 436-43
- Clinical Zinc Deficiency as Early Presentation of Wilson Disease. JPGN: April 2015 Volume 60
 Issue 4 p 457-459
- 11. Value of Serum Zinc in Diagnosing and Assessing Severity of Liver *Disease* in Children With *Wilson Disease*. JPGN: September 2018 Volume 67 Issue 3 p 377-382

Wilson's disease is an autosomal recessive genetic

disorder of copper metabolism

estimated prevalenceof approximately 1:30,000

mutations in the ATP7B

WILSON DISEASE

progressive toxic accumulation of copper in the liver begins in

infancy

Deposition of copper in other organs, such as the nervous

system, corneas, kidneys, and heart during the second decade

or later

WILSON DISEASE

- **ESPGHAN Hepatology Committee:**
- systematic reviews, prospective, and retrospective cohort or controlled studies from 1986 to 2016 in children <18 years</p>
- Published in 2018

Hepatic >2 y

Incidental finding of increased serum transaminases

- Acute hepatitis
- Hepatomegaly
- Fatty liver
- Acute liver failure with hemolysis
- Portal hypertension: esophageal varices, splenomegaly, low platelet count
- Decompensated cirrhosis with ascites

WD should be considered in the differential diagnosis of children older than 1 year presenting with any sign of liver disease ranging from asymptomatically increased serum transaminases

to cirrhosis with hepatosplenomegaly and ascites

or ALF

Neurological and psychiatric Usually >15 y

- Dysarthria Case reports 7–9 y
- Dysphagia, excessive salivation
- Mood/behavior changes including depression, irritability
- Incoordination (eg, handwriting deterioration)
- Declining performance at school
- Resting and intention tremors
- Gait disturbance, dystonia, rigidity
- Mask-like face, risus sardonicus,
- Stroke-like symptoms

- Ophthalmic >10 y : KF rings at slit lamp examination
- Haematological > 7 years :

Acute/chronic hemolytic anemia

Renal :

Renal tubular dysfunction (Fanconi syndrome, tubular acidosis, aminoaciduria)

Nephrolithiasis

Nephrocalcinosis

Cardiac :

Cardiomyopathy, subclinical dysfunction Arrhythmia

Endocrine

Hypoparathyroidism

- Pancreatitis
- Skin lipomas

Skeletal

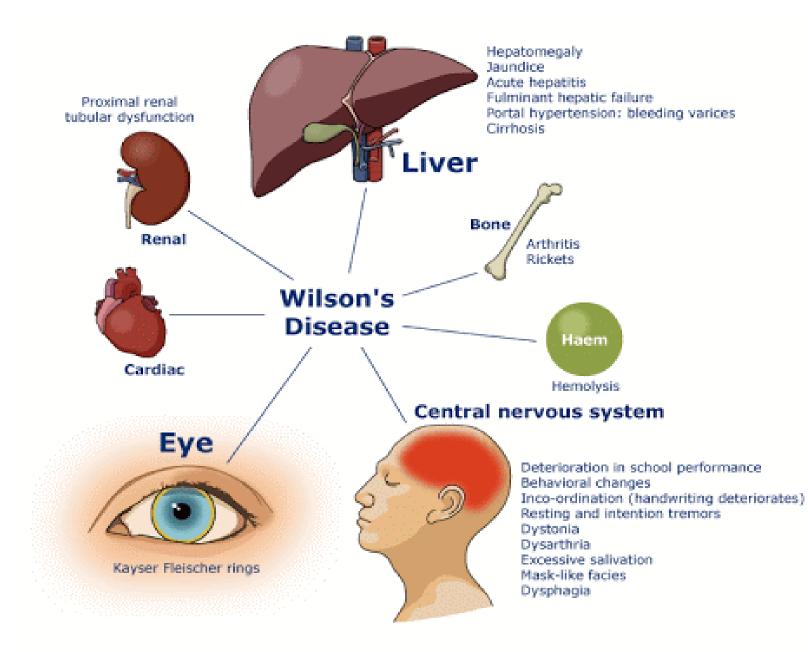
Rickets/osteopenia/osteoporosis Arthropathy

WD may present at any age between 3 and 74 years

 The finding of another possible cause of liver dysfunction, Acute viral hepatitis A Nonalcoholic fatty liver disease Nonalcoholic steatohepatitis Autoimmune hepatitis

shouldnot exclude WD

Neurological/psychiatric symptoms may occasionally be seen before 10 years of age:


- Mild cognitive impairment
- working memory
- language difficulties
- Kayser-Fleischer rings :

Are usually not seen in children with asymptomatic or mild liver disease,

but are **almost always** present in children with **neurological involvement**

Acute hemolysis

- As the initial presentation of WD
- precipitated by infection or drugs
- Prominent in fulminant WD
- Average onset of 12.6 years

Diagnosis:

- Liver Function Tests
- Ceruloplasmin
- Total Serum Copper
- Urinary Copper Excretion
- Mutation Analysis
- Liver Biopsy

Diagnosis:

TABLE 3. Explorations of copper metabolism

	High suspicion of WD		
Serum ceruloplasmin	20-40 mg/dL	<10 mg/dL	
24-Hour urinary copper excretion	<40 μg (<0.65 μmol)	>100 µg (1.6 µmol)	
Liver copper content	<50 μg/g dry weight	>250 µg/g dry weight (>4 µmol/g dry weight)	

Wilson Disease scoring System

Score	-1	0	1	2	4
Kayser-Fleischer rings		Absent		Present	
Neuropsychiatric symptoms suggestive of WD (or typical brain MRI)		Absent		Present	
Coombs negative hemolytic anemia + high serum copper		Absent	Present		
Urinary copper (in the absence of acute hepatitis)		Normal	$1-2 \times ULN$	$>2 \times$ ULN, or normal but $>5 \times$ ULN 1 day after challenge with 2 \times 0.5 g D-penicillamine	
Liver copper quantitative	Normal		<5×ULN (<250 µg/g)	>5×ULN (>250 µg/g)	
Rhodanine positive hepatocytes (only if quantitative Cu measurement is not available)		Absent	Present		
Serum ceruloplasmin (nephelometric assay)		>0.2 g/L	0.1-0.2 g/L	<0.1 g/L	
Disease-causing mutations detected		None	1		2
Assessment of the Wilson's disease diagnostic score				Activate Window	N/C
Assessment of the Wilson's disease diagnostic score				Go to Settings to acti	
0–1: Unlikely	2-3:Proba	ble		4 or more: highly li	

A 6 y.o boy refer for high liver enzymes.He has Coombs negative hemolytic anemia, serum ceruloplasmin :0.02 g/L,normal slitlamp examination and urinary copper:1200 mg /day.What is your idea about Wilson Dx in this patient?

- A. Unlikely
- ▶ B. Probable
- C. Highly likely
- D.Impossible

The Importance of Family Screening for Wilson's Disease

- screening first-degree relatives is recommended by both European and American guidelines
 - Assessment include:
- physical examination
- serum ceruloplasmin
- liver function tests
- Urinary Copper Excretion
- molecular testing for ATP7B mutations
- Newborn screening is not warranted and screening may be delayed until 1 to 2 years of age.

Treatment

Chelating agents :

- D-penicillamine
- Trientine

Blocking the intestinal copper absorption : Zinc salts

Dietary copper **restriction** ??

Avoiding copper-rich food (shellfish, nuts,

chocolate, mushrooms, and organ meats) is advised **until** remission

Treatment

- Treatment is life-long
- Monitoring of compliance
- Early detection of complications
- Prognosis is excellent provided compliance to therapy is adequate.

D-penicillamine

- Introduced in 1956
- Remains the standard treatment for WD
- Chelates copper ,urinary excretion
- Experimentally, also has a copper "detoxifying" effect inducing hepatic metallothionein
- D-penicillamine has been shown to efficiently prevent the progression of disease in asymptomatic children.
- Significant adverse effects resulting in drug withdrawal in up to 30% of cases

D-penicillamine

Sensitivity reactions:

Fever, cutaneous eruptions,

Neutropenia or thrombocytopenia, lymphadenopathy, Proteinuria

► The medium- and long-term

Lupus-like syndrome ,hematuria, proteinuria, arthralgia, bone marrow toxicity

- severe thrombocytopenia or aplasia
- skin changes related to D-penicillamine's anticollagen effects such as elastosis perforans serpiginosa, cutis laxa, pemphigus, lichen planus, and aphthous

stomatitis

Elevations in serum antinuclear antibodies

Trientine

- Trientine, triethylene tetramine hydrochloride
- Was initially introduced in 1969 for WD who developed adverse events related to D-penicillamine
- Rare reports of allergic reactions:
- Arthralgias
- Muscle cramps
- sideroblastic anemia
- Trientine also chelates iron

Trientine

First-line treatment with trientine :

Higher risk of neurologic worsening of symptomatic neurologic patients

Zinc salts

- First-line therapy for presymptomatic patients
- Maintenance therapy after initial decoppering
- Induction of metallothionein in enterocytes
- Copper absorbtion in the small intestine
- Induces hepatocyte metallothionein
- copper detoxifying effect
- Initiation of therapy with zinc salts presents also risk of neurological deterioration

Zinc salts

- Gastrointestinal symptoms : switching to zinc acetate.
- Anemia related to iron deficiency
- Increase of serum amylase and lipase (zinc containing enzymes)
- The recommended dosage :
- 25 mg twice daily children younger than 5 years
- older than 5 years of age :
- 75 mg/day (if body weight <50 kg)</p>
- 150 mg/day (if body weight >50 kg) in 3 divided

TREATMENT

TABLE 5. Dosage and treatment monitoring

	Zinc salts	D-penicillamine	Trientine
Dosage in children	Zinc acetate, zinc sulphate Age >16 years and body weight >50 kg: 150 mg [*] day in 3 divided doses. Age 6-16 years and body weight <50 kg: 75	Starting dose: 150-300 mg/day, gradually increasing once a week up to 20 mg/kg/day given in 2 or 3 divided doses or 1000 mg (max	Starting dose: 20 mg/kg/day or 1000 mg (max 1500 mg) in young adults given in 2 or 3 divided doses.
	mg [*] day in 3 divided doses younger than 6 years of age:50 mg [*] day in 2 divided doses	 1500 mg) in young adults given in 2 or 4 divided doses. Maintenance dose: 10-20 mg/kg/ day up to 750 mg-1000 mg/day in 2 divided doses 	Maintenance dose: 900-1500 mg/ day in 2 or 3 divided doses.
Administration	1 hour before meal or 2 hours after meal	1 hour before meal or 2 hours after meal	1 hour before meal or 3 hours after meal
Adequacy of treatment parameters	<pre>Urinary copper excretion: 30-75 μg (0.5- 1.2 μmol/L) /24 hours on maintenance treatment Serum zinc level >125 μg/dL Urinary zinc >2 mg/24 h on maintenance</pre>	Urinary copper excretion: 200-500 µg (3-8 µmol/L)/24 hours on maintenance treatment	Urinary copper excretion: 200-500 µg (3-8 µmol/L)/24 hours on maintenance treatment
	treatment		
Liver function improvement	Usually 2-6 months, ALT iormalization within 1 year	Usually 2-6 months	Usually 2-6 months
Indication for a drug change	Persistent ALT >3× upper limit of normal and/or INR >1.5 Poor tolerance, for example, nausea, abdominal pain, gastric ulcerations	Poor tolerance or side effects, for example, hypersensitivity reactions, fever, neutropenia, thrombocytopenia, lymphadenopathy or proteinuria	Foor tolerance or side effects, for example, allergic reactions, arthralgia, sideroblastic anemia

Treatment Strategy

In asymptomatic children or children with mild liver symptoms : All available treatments

- In symptomatic patients:
- chelating agents (Dpenicillamine, trientine)
- Sequential treatment
- However under which conditions a patient can be switched to zinc maintenance ?

LIVE TRANSPLANTATION

- Indications :
- patients with ALF
- progression of liver dysfunction to liver failure despite drug therapy
- Decompensated cirrhosis
- Severe neurological disease
- Neurological and especially psychiatric involvement may show little improvement
- L.Tx cannot be considered for patients with severe neuropsychiatric involvement

LIVE TRANSPLANTATION

TABLE 6. Wilson's disease scoring system to predict the outcome of children with hepatic decompensation (King's Wilson index) by Dhawan et al (8)

Score	Bilirubin, µmol/L	INR	AST	Leukocytes, 10 ⁹ /L	Albumin, g/L
0	0-100	0-1.29	0-100	0-6.7	>45
1	101 - 150	1.3 - 1.6	101 - 150	6.8-8.3	34-44
2	151 - 200	1.7 - 1.9	151 - 200	8.4-10.3	25-33
3	201-300	2.0 - 2.4	201-300	10.4 - 15.3	21-24
4	>300	>2.5	>300	>15.3	0-20

A 12 y.o girl known case of Wilson Dx has Bilirubin=210 mmol/L,INR=2.8, AST=250,Leukocytes=5.4*10⁹/L and Albumin

- g/L .What is your plan of therapy?
- A. D-penicillamine with zinc
- **B.** Trientine with zinc
- C. D-penicillamine with trientine
- D. Start D-penicillamine and consider liver TX

Monitoring

- ► P/E
- ► LFT
- 24 hours urinary copper
- Yearly slit-lamp examination
- Brain MRI

Initiation of therapy :

- Every 1 to 3 months until remission and every 3 to 6 months afterwards.
- Non adherence : life-threatening deterioration
- Intervals should be shorter in adolescents

