

Pediatric Neuromuscular Disorders: Clinical Assessment

Hamid Nemati, MD/MPH

Associate Professor of Pediatric Neuro-Epileptology, SUMS

Definition

- Neuromuscular disorders are characterized by the anatomic localization of the pathology within the motor unit.
- The motor unit consists of the:
- 1) Motor neuron within the ventral horn of the spinal cord and brainstem motor nuclei (Neuronopathy)
 - 2) Peripheral nerve (Neuropathy)
 - 3) Neuromuscular junction (N.M.J disorders)
 - 4) Muscle (Myopathy)

Disorders of muscle are subdivided into **six categories** based upon histopathology features on muscle biopsy:

- 1. Dystrophies (degenerative disorders of the muscle fiber)
- 2. Congenital myopathies (structural abnormality of the muscle fiber or extracellular collagen matrix)

- 3. Metabolic disorders affecting muscle (storage diseases, energy processing disorders)
 - 4. Mitochondrial diseases (energy generation or utilization)
 - 5. Inflammatory myopathies (idiopathic)
 - 6. Infectious myositis (bacterial, viral, protozoan)

Epidemiology

- The point prevalence was 1 in 1600 children overall, and 1 in 1900 for genetically based disorders. This indicates that about 84% of neuromuscular disorders in this cohort had a genetic basis, and only about 16% had an acquired etiology
- The most commonly encountered pediatric neuromuscular disorders, in descending order of prevalence, are DMD, CMT disease, congenital myopathies, myotonic dystrophy, SMA,...

Classification of Pediatric Neuromuscular Disorders

	Disorder	Features	Gene	Protein			
Acquired Etiology	Genetic Etiology						
Motor Neuron							
Infection: Polio West Nile virus Enterovirus	SMA with respiratory distress (SMARD) SMA, X-linked SMA, lower extremity predominant		SMN1 IGHMBP2 UBA1 TRPV4	Survival of motor neuron 1 Immunoglobulin mu binding protein 2 Ubiquitin-activating enzyme 1 Transient receptor potential cation channel, subfamily V, member 4			
Peripheral Nerve				410 - 75 - 210			
AIDP (Guillain-Barre syndrome)	CMT type 1, AD, demyelinating	6 main types e.g. CMT1A	13 genes e.g. <i>PMP22</i>	Peripheral myelin protein 22			
CIDP	CMT type 2, AD, axonal	22 subtypes e.g. CMT 2A	22 genes e.g. MFN2	Mitofusin 2			
Infection: Tick paralysis Lyme disease	CMT type 4, AR CMT, X-linked	6 types e.g. CMTX1	13 genes GJB1	Gap junction protein beta 1			

	Disorder	Features	Gene	Protein			
Acquired Etiology	Genetic Etiology						
Neuromuscular Junc	tion						
Infantile botulism	CMS, slow channel	4 subtypes	4 genes				
		3 subtypes	3 genes				
Myasthenia gravis	CMS, fast channel						
Neonatal myasthenia gravis	CMS, acetylcholine receptor deficiency	3 subtypes	3 genes	Y.			
	Other specific phenotypes	17 subtypes	RAPSYN, CHAT, C	CHRNE, DOK7, COLQ, MUSK, AGRN, others			

	Disorder	Features	Gene	Protein			
Acquired Etiology	Genetic Etiology						
Muscle							
	Muscular Dystrophy	DMD/BMD	DMD	Dystrophin			
		EDD	EMD	Emerin			
			FHL1	4½ LIM domain 1 lamin A/C			
		Limovan	LMNA				
		FSHD	DUX4	Double homeobox 4			
		LGMDs	22AR and 8 AD forms				
	Congenital Muscular	Merosin deficient	LAMA2	Laminin alpha 2 chain of merosin			
	Dystrophy	Ullrich/Bethlem	COL6A1, A2 and A3	Collagen type VI A1, A2, A3			
		Rigid spine	SEPN1	Selenoprotein N1			
		Defeative above dation	ACTA1	Alpha actin			
		Defective glycosylation disorders	18 genes	e.g. FKRP			
	Congenital Myopathy	Nemaline	10 genes				
		Congenital fiber type disproportion	5 genes				
		Myotubular	MTM1	Myotubularin			
		Centronuclear	5 genes	A -			
		Central core	RYR1 (also malignant hyperthermia gene)	Ryanodine receptor 1			
		Distal Myopathy	5.				
		e.g. Miyoshi	DYSF	Dysferlin			
	Myotonic Disorders	Myotonic dystrophy type 1	DMPK	Myotonic dystrophy protein kinase			
		Myotonic dystrophy type 2	CNBP	Cellular nucleic acid binding protein			
		Myotonia congenita	CLCN1 (Thompson = AD, Becker = AR)	Chloride channel 1			
		Paramyotonia congenita	SCN4A (also periodic paralysis)	Sodium channel, voltage-gated, type IV, alpha			
		Schwartz-Jampel syndrome	HSPG2	Perlecan			

	Disorder	Features	Gene	Protein
Acquired Etiology	\$ =	_	Genetic Etiology	
	Disorder	Features	Gene	Protein
Acquired Etiology	5E		Genetic Etiology	
	Metabolic Myopathy	Glycogen storage	10 genes	
		e.g. GSD type II (Pompe disease)	GAA	Alpha-glucosidase
		Glycolytic pathway	4 genes	
		e.g. GSD type V (McArdle disease)	PYGM	Muscle phosphorylase
		Lipid metabolism	12 genes	
		e.g. CPT type 2	CPT2	Carnitine palmitoyl-transferase II
Idiopathic Inflammat	ory Myopathy	+		
Dermatomyositis Polymyositis				
Infectious Myositis				

EVALUATION OF THE CHILD WITH A SUSPECTED NMD

- Diagnosis is obvious and needs only confirmation with a definitive test, for example, the classic infant with SMA or the boy with DMD.
- More often a **structured approach** is taken by the clinician to work through the diagnostic process.

• Key Points:

- Presenting symptoms
- gender
- family history

- age at symptom onset
- rate of progression
- other organ system involvement

- These clinical features will enable the clinician to:
- Localize the lesion within the neuroaxis
- Develop a differential diagnosis
- - Strategize a plan for further evaluation
- Consider treatment options

TABLE 137-3 Localizing Clinical Features of Pediatric Neuromuscular Disorders

(Typical Features Are Listed, With an Example of a More Common Genetic and Acquired Disorder for Each Category)

Localization	Distribution and Features of Weakness	DTRs	Sensory Deficit	CNS	Other
Anterior Horn Cell	SMA: P > D	0	0	0	Fasciculations
	Polio: S or G	0	0	0	M pain
Peripheral Nerve	CMT: D > P	0	D>P	0	DA, pes cavus
	GBS: ascending	D:0 then G	D±	0	Autonomic
Neuromuscular Junction	MG: F, G; fluctuates	+	0	0	M fatigue
	Botulism: G	+ or 0	0	0	Mydriasis
Muscle	MD: P > D; LE > UE, ±F	P = 0; D ±	0	±	H and/or A, C
	Myositis: P > D	$P = 0$; D \pm	0	0	M tenderness

P: proximal

D: Distal

S: Segmental

G: Generalized

F: Focal (ptosis, facial, bulbar)

LE: Lower extremity

UE: Upper extremity

H: Hypertrophy

A: Atrophy

M: Muscle

C: Joint contractures

DTRs: deep tendon (muscle stretch) reflexes; 0: absent; +: reduced; ++: normal;, +++: brisk; ++++: hyperactive; +/-: marginally present

CNS: central nervous system component—seizures, intellectual disability, brain and eye malformation

- Distinctive features and varied influence in different age, reflects age-related differences in psychomotor development.
- Weakness may not be the initial or predominant symptom.
- Fixed weakness need to be distinguished from fluctuating or intermittent weakness.

- Acquired disorders generally present with an acute or su-bacute onset and may progress rapidly.
- Genetically based disorders tend to present with a more indolent onset and subtle influence on motor function.
- Exceptions certainly occur: SMA type 1 can present acutely similar to infantile botulism, and CIDP may present in a chronic manner similar to CMT neuropathies

History

- Onset of symptoms and signs, tempo of progression, effect on motor development, muscle pain or cramp, sensory symptoms, and coordination/balance issues
- Related respiratory, cardiac, feeding/growth, and musculoskeletal issue, patient's independent functioning at home, at school, and in the community.
- A careful family history
- The review of systems: for features of a systemic or genetic disease

Fetal/Neonatal onset

- reduced fetal activity
- abnormal fetal ultrasound (decreased fetal activity or contractures)
- Abnormal Non-stress test (decreased activity, reactivity, or abnormal posture)
- Increased or decreased amniotic fluid volume
- Breech presentation
- Neonatal torticollis, scoliosis, multiple joint contractures or UDT
- Characteristic facies and ophthalmoplegia in congenital myopathies and a characteristic facial appearance with atrophy of the temporalis muscles in myotonic dystrophy

Signs and symptoms in the infant

- Hypotonia ("floppy baby")
- Delayed acquisition of motor milestones
- Dysphagia
- Failure to thrive
- Hypoventilation
- Cardiomyopathy

- Childhood onset: a plateau or slowing of progression in motor development
- Adolescent onset: muscle fatigue and activity-related myalgias more prominent than weakness
- frank pain is not a typical symptom in most MNDs. Exceptions include myotonic dystrophy type 2 and GBS
- Fluctuating or intermittent weakness is characteristic of NMJ, CMS, and different subtypes of periodic paralysis

Examination

- Inspection
- Muscle bulk and quality
- Joint mobility and tone
- Muscle strength and weakness
- Motor function testing
- Muscle stretch reflexes (DTR)
- Sensory testing

Figure 146-3. The Gowers maneurver in a 5-year old boy with Duchenne muscular dystrophy. The patient is asked to stand up from a supine position. Note that he rolls to the side, then into prone position, followed by widening the base of support, arising first with his buttocks then using his hands on his thighs to "climb up his legs" to gain an upright posture.

Figure 148-1. The "myopathic" facies. One of the characteristic clinical observations in many children with congenital myopathies is the so-called "myopathic" facial appearance. This can include both upper and lower facial weakness, as illustrated in these photomicrographs. *Left panel:* The patient depicted demonstrates ptosis, ocular misalignment caused by ophthalmoparesis, an inverted C-shape to her upper lip, and prominent lower facial weakness resulting in an open mouth appearance. The ultimate diagnosis in this case was nemaline myopathy caused by recessive mutation in the *LMOD3* gene. Patients with nemaline myopathy often have particularly striking lower facial weakness. *Middle panel:* This individual has ptosis, ophthalmoparesis, and moderate lower facial weakness. He has DNM2-related centronuclear myopathy. Note also the muscle atrophy present in his chest and shoulders. *Right panel:* Photograph of a young boy with myotubular myopathy caused by MTM1 mutation. He has the characteristic long face with bilateral ptosis and ophthalmoparesis.

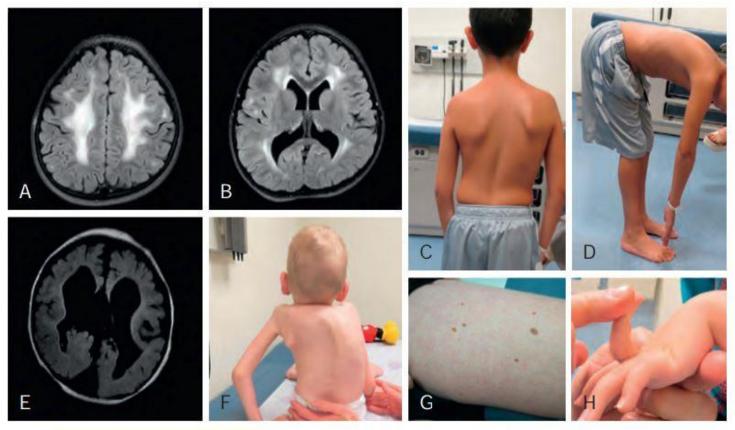


Fig. 627.7 Findings in congenital muscular dystrophies. A and B, Axial FLAIR brain MRI images showing the increased T2 hyperintensity seen within the white matter in patients with LAMA2 CMD. C, Scapular winging and scoliosis in patient with SEPN1 muscular dystrophy. D, Rigid spine noted in forward flexion in patient with SEPN1 muscular dystrophy. E, Brain MRI in patient with muscle-eye-brain disease with absent corpus callosum, Dandy-Walker malformation, subependymal cysts. F, Early and severe kyphoscoliosis in a child with Ullrich congenital muscular dystrophy. G, Keratosis pilaris, a common skin finding in patients with collagen VI-related CMDs. H, Distal hyperlaxity seen in patients with collagen VI-related CMDs. (Courtesy Drs. Carsten Bönnemann and Reghan Foley, Neuromuscular and Neurogenetics Disorders of Childhood Section, NINDS/NIH.)

Floppy Infant

Fig. 630.1 Type I spinal muscular atrophy (Werdnig-Hoffmann disease): clinical manifestations of weakness of limb and axial musculature in a 4-mo old infant with severe weakness and hypotonia. With vertical suspension (A), note the dangling lower limbs with lack of hip flexion, tendency of the upper limbs to slip through the examiner's hands, and lack of neck flexion with resulting head lag. When subject is supine, note the frog-leg positioning of the legs and the lack of traction response (B) and the lag of head (C), with attempts by the examiner to pull the infant to a sitting position. (From Oskoui M, Darras BT, De Vivo DC: Spinal muscular atrophy: 125 years later and on the verge of a cure. In Sumner CJ, Paushkin S, Ko C-P, eds: Spinal muscular atrophy: disease mechanisms and therapy. San Diego, 2017, Academic Press, Chapters 1 and 3–19.)

BMC Med Genet. 2019; 20: 13.

Published online 2019 Jan 14. doi: 10.1186/s12881-018-0743-1

PMCID: PMC6332642

PMID: 30642275

A novel mutation in SEPN1 causing rigid spine muscular dystrophy 1: a Case report

Fateme Ziyaee, ¹ Eslam Shorafa, ¹ Hassan Dastsooz, ^{2,3} Parham Habibzadeh, ^{3,4} Hamid Nemati, ⁵ Amir Saeed, ¹ Mohammad Silawi, ³ Mohammad Ali Farazi Fard, ³ Mohammad Ali Faghihi, ^{3,6} and Seyed Alireza Dastgheib^{®3,7}

Fig. 1

Generalized muscular atrophy, kyphoscoliosis, and flexion contracture of the knees and elbows in our patient

Myotonic Muscular Dystrophy

Suggested algorithm for the assessment of the child with a suspected NMD

PRESENTATION

Evaluate the history and examination for the following; refer to Table 137-4 and Box 137-1 for additional details

Age of onset: congenital, infancy, childhood, adolescence

Gender: male/female

Clinical symptoms: hypotonia, weakness, motor delay, fasiculations, myotonia, cramping, pain, sensory loss, etc

Rate of progression: acute, subacute, chronic, chronic with acute presentation

Other organ involvement: cardiac, pulmonary, gastrointestinal, hepatic, renal, musculoskeletal, brain

Localization: motor neuron, peripheral nerve, neuromuscular junction, muscle

Personal and family history: Do they suggest a genetic disorder?

Genetic or acquired conditions to consider. See glossary for abbreviations

Algorithm..cont

ESTABLISH INITIAL DIFFERENTIAL DIAGNOSIS Genetic or acquired conditions to consider. See glossary for abbreviations						
	Motor Neuron	Peripheral nerve	NM junction	Muscle		
Congenital	SMA type 0 In utero toxin, HIE	CMT variants In utero toxin	CMS Neonatal MG	Congenital DM1, CM, CMD		
Infancy	SMA types 1 and 2 Enterovirus/polio, WNV	CMT variants GBS, toxic, MN	CMS Botulism, MG	CM, DM1, CMD, MM, MiM, DMD, LGMD EM, IM		
Childhood	SMA type 3 Enterovirus/polio, WNV	CMT variants GBS/CIDP, tick, toxic, IN, MN	CMS MG, toxin	DMD/BMD, CM, LGMD, DM1, CMD, MM, MiM DM/PM, IM, EM		
Adolescence	Juvenile ALS Enterovirus/polio, WNV	CMT variants GBS/CIDP, tick, toxic, IN, MN	CMS MG, toxin	BMD, LGMD, DM1, DM2, MM, MiM DM/PM, IM, EM		

PERFORM NON-INVASIVE FIRST-TIER AND, IF NEEDED, INVASIVE SECOND-TIER TESTING TO DETERMINE IF:

Algorithm..cont

PERFORM NON-INVASIVE FIRST-TIER AND, IF NEEDED, INVASIVE SECOND-TIER TESTING TO DETERMINE IF:

- 1. Neuropathic (motor neuron or peripheral nerve), neuromuscular junction or muscle disorder
- 2. Genetic or acquired condition

	Motor Neuron and Peripheral Neuropathy	Neuromuscular Junction	Myopathy	
FIRST TIER		8	250	
Muscle Enzyme (Creatinine Kinase)	Normal or slightly elevated	Normal	Normal to marked elevation	
		Acetylcholine receptor antibody titer	Lactate/pyruvate, carnitine, acylcarnitine; K+ for periodic paralysis; aldolase, LDH, ESR and ANA for DM/PM	
Muscle imaging Muscle ultrasound		normal	*Ultrasound for CM and MD *MRI for MD, DM/PM	
MRI brain for leukodystrophy or mitochondrial features MRI for nerve root enhancement in GBS		Mediastinal MRI or CT for MG associated thymoma	MRI for CMD	
SECOND TIER			•	
Electrophysiology Nerve conduction velocity and electromyography *NCV: for axonal and demyelinating motor/sensory neuropathy – genetic and acquired *EMG: for motor neuron and axonal motor neuropathy		Repetitive nerve stimulation testing for MG, botulism, or NMJ poisoning	EMG for myopathic features and to exclude a neuropathy	
Muscle and Nerve pathology	Nerve biopsy for inflammation or storage, EM for mitochondrial changes	EM of NMJ	Define disease specific myopathology (Chapter 135)	
Lumbar Puncture	CSF profile for GBS/CIDP or metabolic neuropathy	N/A	N/A	

- 1. Create 'final' differential diagnosis and if acquired condition complete diagnostic evaluation.
- If genetic, do disease specific testing, gene panel for neuromuscular disorder subtype or whole genome or exome sequencing (Chapter 136 and elsewhere in this section). The www.genetests.org

Take Home Message

- Pediatric neuromuscular conditions may present from prenatal through adolescent development
- Physical impairment and morbidity are often substantial, and, in the most severe forms, there is reduced survival
- Consider the early symptoms detection and physical examination of pediatric NMD, and how to evaluate patients using structured functional measures
- Determine change over time, which can then be used to predict the future course and demonstrate a response to an intervention